
ndnMouse

Wesley Minner
CS 217B, Spring 2017
Project Final Presentation

Secure Control Interface for a PC
Using a Mobile Device

Motivation (Recap)

Primary use case: slideshow control

● Traditional...
○ Wired: short cord → small radius
○ Wireless: poor security, possibly spotty signal, dead batteries
○ Must carry around extra hardware

● ndnMouse…
○ Robust security
○ Efficient multicasting
○ Uses pre-existing hardware (your phone) and wireless

resources (a local WiFi access point or phone hotspot)

Features

● Full mouse control
○ Relative cursor movement
○ Left/right click (with hold down support)
○ Movement sensitivity and precision settings

● Two-finger scrolling
○ Works similarly to Apple laptops
○ Scrolling inversion and sensitivity settings

● Rudimentary keyboard support
○ Common slideshow control commands: arrows keys, spacebar, ESC, etc…
○ Custom typed messages: using built-in Android keyboard

● Encompassing security
○ Defends against packet snooping, replay attacks, privacy attacks, and brute force attacks

Supported Platforms

ndnMouse composed of two applications...

● Server/producer Java application
○ Running on any relatively modern Android phone (Android 4.1 and up)

● Client/consumer Python application
○ Running on any PC that can run NFD and Python3
○ Windows still supported by ndnMouse’s UDP communication

Communication Protocols

Four Protocol Configurations

● Communication over…
○ UDP
○ NDN

● Security...
○ ON
○ OFF

2 comm choices x 2 security choices = 4

Protocol Requirements

● ndnMouse DOESN’T need:
○ Reliable data delivery
○ In-order processing

● ndnMouse DOES need:
○ Recovery from network loss
○ Low latency

● Late packets will be thrown away to prevent unexpected mouse movement and
jitter

UDP

● ndnMouse’s baseline, IP-based
protocol
○ High performance
○ Unsolicited data

● UDP satisfies the requirements
better than TCP

● Stateful session implemented on
top of UDP

UDP Message Formats

NDN

● ndnMouse’s primary protocol
○ Simple
○ Stateless
○ Solicited data

● No unsolicited data
○ One interest → one data

● May be multiple interests pending at
any one time

NDN Message Formats

● Mouse control interests
○ /move
○ /command

● Security related interests
○ /seq
○ /salt

Mouse Packets

● Fixed length 32 byte packets
● Cleartext

○ Random 16 byte initialization vector (IV)

● Ciphertext
○ Sequence number, 4 bytes
○ Message padded to 12 bytes with PKCS5 padding

Security

Three Major Components

● Data Encryption*
● Sequence Number Validation
● Password Salting

* We get User Authentication for free from data encryption

Data Encryption

● Advanced Encryption Standard (AES)
○ Using 128 bit key hashed from user password + salt (SHA256)
○ Only consumers with proper key can decrypt → authentication

● Cipher block chaining (CBC)
○ 16 byte block size

● Random IVs for each packet
○ Prepended to encrypted payload
○ Communicated in cleartext

Sequence Number Validation

● Protects against inter-session replay attacks
● Enforced policy: no command should be executed which contains a sequence

number lower than the largest sequence number witnessed by the device
○ Policy applies to both UDP and NDN, clients/consumers and server/producer

● UDP
○ OPEN message carries seq num 0
○ OPEN-ACK response carries seq num 1

● NDN
○ Interests do not carry seq num (security reasons)
○ Response data carries seq num only

● Catch-up mechanisms help out of sync devices recover
○ /ndnmouse/seq

Password Salting

● Protects against intra-session replay attacks
● UDP

○ Uses IV of initial OPEN message as salt
○ Each client gets a different salt per session

● NDN
○ Consumer requests salt directly from producer: /ndnmouse/salt
○ Each consumer gets the same salt per session

Security Interests

● Password salt
○ unique for each producer

session

● Seq num sync
○ protected by checking

decrypted message format

Attack Types and Defenses

● Snooping data
○ Encrypting payloads

● Replay attacks
○ Sequence number validation (inter-session)
○ Password salts (intra-session)

● Privacy attacks
○ Random IVs on each packet
○ (Two packets with same payload encrypt to

different ciphertext)

● Brute force attacks
○ Short-lived, unique keys per session via

password salt

Challenges and Trade-offs

Unsolicited Data

● Background
○ Unsolicited data useful for sending unpredictable mouse command data like mouse clicks,

keyboard presses, etc…
○ Client can avoid the need to poll for this type of data
○ UDP can easily send unsolicited data

● Problem
○ NDN cannot send unsolicited data (one interest → one data)

● Solution
○ Create additional interests to poll continuously: /ndnmouse/command

● Trade-off
○ Performance hit from additional outstanding interests
○ Complexity of packing/unpacking data (get all data from one big interest)

Addressing Devices Using NDN
● Problem

○ NFD does not currently propagate prefix registrations
○ ndnMouse uses a common WiFi AP → two NFD hops between consumer and producer

● Example
○ Producer registers prefix /ndnmouse with

its local NFD
○ Registration does not propagate to other

NFDs
○ Consumer NFD doesn’t know where to

forward /ndnmouse interests

● Solution
○ ndnMouse asks consumer to enter IP

address of producer
○ Set up a route for NFD to forward interests

Signature Validation vs Shared Password

● Problem
○ Need to share a secret (symmetric key) between consumer and producer
○ How does producer know which consumers to trust?

● Solution
○ User must whitelist certain device identities (requires signed identity installation ahead of time)
○ Then validate devices by traveling up trust chain to trust anchor
○ Then use public/private keys to exchange symmetric key

● OR more practical solution...
○ User could provide a password on both devices, since they are starting up the application anyway

● Trade-off
○ Complexity of requiring user to have intimate knowledge of NDN (signing/whitelisting identities)
○ Long-term overhead of requiring a password on every startup

Performance Analysis

Benchmark Setup

● Devices
○ Custom built desktop: Ivy Bridge i5 Intel CPU, Ubuntu 16
○ Macbook Pro: late 2013 model, macOS Sierra 10.12
○ Nexus 5X Android phone: Android 7.0

● All devices on same wireless WiFi access point
● NdnMouse security enabled for all benchmarks
● Each test lasted 30 seconds, sending continuous movement updates

○ Ideal (maximum) movement update frequency: 20 packets/sec

NDN vs UDP

Event-Driven Architecture (NDN)

● Program flow
○ A single thread is created on the phone to run the NDN producer
○ Producer sets up callbacks for specific interest names (events)
○ NFD condenses duplicate interests and forwards unique ones
○ Interests arrive and producer handles them serially

● Advantages
○ Efficient and scales well
○ Encourages stateless design → shorter and simpler code

● Disadvantages
○ Performance limited by NFD overhead
○ Hard to add per-client state if needed

Multi-Threaded Architecture (UDP)

● Program flow
○ One parent thread is created on the phone to run the server
○ Server spins up a separate worker thread to handle each new client
○ Worker thread dies only when client ends session

● Advantages
○ Easy to keep per-client state
○ UDP integrated in kernel gives very fast performance

● Disadvantages
○ Multiple clients increase thread management overhead → degraded performance
○ Multicasting not efficient

Extensions

NDN Performance Optimization

● Multiple outstanding interests
○ Problem: must wait for the single /ndnmouse/move interest to come back (data or timeout) before

sending out the next movement update interest
○ Possible solution: rotate between /ndnmouse/move1, /ndnmouse/move2, /ndnmouse/move3

■ Alternate solution: append sequence numbers → /ndnmouse/move/<seq>
○ Trade-off: client latency with server memory/processing

● Condense interests into one big interest
○ Problem: currently separate interests for different types of data

■ /ndnmouse/move
■ /ndnmouse/command

○ Possible solution: merge interests into a generalized data interest
■ /ndnmouse/move + /ndnmouse/command → /ndnmouse/update

○ Trade-off: client latency with data packing/unpacking complexity

Many Mice, One PC

● Current: control multiple PCs with one mouse
○ Ex: roadmap to cross-computer mouse support (see two slides from now)

● Extension: control one PC with many mice
○ Ex: shared slideshow control

Additional Wireless Interface Support

● Users may wish to use wireless interfaces other than WiFi AP
● Bluetooth

○ Being worked on by Da Teng

● WiFi Direct
○ Being worked on by Amar Chandole

From our collaborations, minor changes needed for ndnMouse to support these
interfaces.

● Additional questions: is security necessary on bluetooth?

Cross-Computer Mouse Support

● Many computers/OS’s can share a
mouse/keyboard

● Synergy already does this for PCs
● NdnMouse could do this using

your phone, with more efficient
multicasting!

Related Work

NDN Applications

● No known NDN real-time control applications
● ChronoSync offers real-time synchronization

of data
○ Applications that use this, like NDN Whiteboard, are

more latency tolerant than ndnMouse

Open-Source Mouse Control

● Android Desktop Remote Control (53 stars on Github)
○ UDP datagrams
○ Server-PC/client-phone: however, does not support many-mice/one-PC relationship
○ No security
○ Not released on Google Play

● Mobile Mouse (8 stars on Github)
○ TCP socket
○ Server-PC/client-phone: however, does not support many-mice/one-PC relationship
○ No security
○ Not released on Google Play

Closed-Source Mouse Control

● Remote Mouse (5-10 million installs)
○ Free base application: ad-supported + additional pay features
○ Server-PC/client-phone: supports many-mice/one-PC

relationship
○ UDP for commands and TCP for session setup
○ Recovers from temporary network loss
○ Very weak security

■ No encryption
■ Same security hash used every time for authorization on

session setup (easy to replay)
■ Mouse movements in cleartext
■ Keyboard typing obfuscated by some form of a Ceasar

Cipher (shifting characters by a constant amount)

Closed-Source Mouse Control

● WiFi Mouse (5-10 million installs)
○ Free base application: ad-supported + additional pay

features
○ Server-PC/client-phone: supports many-mice/one-PC

relationship
○ TCP for all communication
○ Does NOT recover from temporary network loss
○ Extremely Weak Security

■ No encryption
■ Same security hash used every time for authorization

on session setup (easy to replay)
■ Mouse and keyboard commands all in cleartext

○ Privacy concerns: transmits what programs you are running
on your PC to your phone

What Have I Learned?

● Don’t use closed-source mouse control applications
● Adding strong security to an insecure implementation is difficult

○ Not easy to just “patch” it in. Many changes to the communication protocol had to be made.
○ Sometimes statefulness is a necessary evil (to prevent replay attacks!)

● NDN applications require a new way of thinking about data
○ How can we reuse data?
○ How do we exploit caches (or avoid them altogether)?

In NDN, multicast is the star of the show!

Thank You!

References

● CBC:
https://en.wikipedia.org/wiki/Block_cipher_mode_of_operation

● Android Desktop Remote Control:
https://github.com/justin-taylor/Android-Desktop-Remote-Cont
rol

● Mobile Mouse: https://github.com/tuesda/mobilemouse
● Remote Mouse:

https://play.google.com/store/apps/details?id=com.hungrybolo.
remotemouseandroid

● WiFi Mouse:
https://play.google.com/store/apps/details?id=com.necta.wifim
ousefree

https://en.wikipedia.org/wiki/Block_cipher_mode_of_operation
https://en.wikipedia.org/wiki/Block_cipher_mode_of_operation
https://github.com/justin-taylor/Android-Desktop-Remote-Control
https://github.com/justin-taylor/Android-Desktop-Remote-Control
https://github.com/justin-taylor/Android-Desktop-Remote-Control
https://github.com/tuesda/mobilemouse
https://play.google.com/store/apps/details?id=com.hungrybolo.remotemouseandroid
https://play.google.com/store/apps/details?id=com.hungrybolo.remotemouseandroid
https://play.google.com/store/apps/details?id=com.hungrybolo.remotemouseandroid
https://play.google.com/store/apps/details?id=com.necta.wifimousefree
https://play.google.com/store/apps/details?id=com.necta.wifimousefree
https://play.google.com/store/apps/details?id=com.necta.wifimousefree

Appendix - Screenshots

Appendix - Screenshots

